If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150-100x-12x^2=0
a = -12; b = -100; c = +150;
Δ = b2-4ac
Δ = -1002-4·(-12)·150
Δ = 17200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17200}=\sqrt{400*43}=\sqrt{400}*\sqrt{43}=20\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{43}}{2*-12}=\frac{100-20\sqrt{43}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{43}}{2*-12}=\frac{100+20\sqrt{43}}{-24} $
| 13b=-299 | | -5=v+19 | | x+5/2x+10=31 | | 12x-33=75 | | 6=s/35 | | N/4+12=n/3-5 | | |x|–5=7 | | 5x-15=5x+8 | | 6k^2+14k=0 | | -2x-3=6x+5 | | x+21/2x+10=31 | | 1.5h+19=2.75h+14 | | (5x-3(+(2x+1)=180 | | 5(x-9)+6=2x+3x+-8 | | 3u=u+36 | | 25d=1775 | | 2x+140-10=180 | | -6y=17+3y-10 | | 20=2+z/6 | | 5q=7 | | 8(5-4c)+25c+7c=10 | | 2x+3x-8=5x+10 | | 23=2t+1= | | n/3+1=-2 | | -4=2v+8 | | -7k-2k^2=0 | | 140+2x-10=180 | | 6-8x=3.6 | | 840=-28r | | 9x+7=9x | | X+20=2x+32 | | 13-w=155 |